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V
1. INTRODUCTION

iI i1.1 Background

11For tactical air superiority a pilot should know where in the

flight envelope he enjoys slight advantage, attempt to structure

the engagement to enter this region, and be willing to travel to

the border of his flight envelope to capture the advantage.

Unfortunately, in the very important case of maneuverability, for

years the borders of the flight envelope have produced bodily

acceleration levels which- represent a physiologically hostile

environment. The acceleration data plotted in Figure 1.1-1 is

taken from a 1938 flight of a Heinkel He 50 b12ilane dive bomber

(18) and demonstrates very significant acceleration onset rates to

the 4g level and elevated G levels sustained for up to six

seconds.

KI

Figure 1.1-1 G lavels experienced in a 19.38 Heinkel
50 flight (from Von Seckh (is)) (courtesy
of Aerospece Medical Association).

The evolution of tactical aircraft has intensified this hos-

tile environment in terms of acceleration magnitude, duration, and

frequency of occurrence as demonstrated in Figure 1.1-2 which il-

lustrates G levels recorded during an actual N4E combat engagement

(154). The newest domestic tactical aircraft designs have further

intensified acceleration levels as depicted in Figure 1.1-3 demon-

strating F15 engagement capabilities (86). We often think of such

maneuvering as being the sole province of air combat maneuvering

(ACM); however, close air support and other air to ground sorties

can employ low level terrain avoidance flight strategically.

.- 1-
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Figure 1.1-2 Recorded G levels (from Leverett & Burton
(154)) (courtesy of Advisory Group for

Aerospace Research and Development).

F-1 5
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IoI

Z,,

0 20 40 so o 100

SECONDS

Figure 1.1-3 FIS engagement capabilities (from Gillingham
£ Krutz(8))•.

Perdriel and Whiteside (170) report on significant acceleration in-

duced visual degradation occurring in such flight. It is evident
that the technology of aircraft des4tgn and mission strategy have

produced increases in flight acceleration boundaries reaching the
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threshold of that which can be withstood by pilots. Assuming such
advantages have been provided friend tnd foe alike, the mea~sure of
advantage may more directly fall1 on the efficacy of protective de-
vices a pilot is provided with to help increase his resistance to

the adverse effects of elevated acceleration and how well trained

the pilot is in functioning in this environment.

Entrance to and operation in the high G environment occurs
for strategic reasons to gain advantage, and affects, depending on
the severity of the acceleration levels encountered, pilot air-
craft control (50, 98). Similarly, maneuvering tactics are struc-
tured to accommodate the physiological stresses of high G and at-
tempt to minimize the more sp:ious physiological abuse which could
lead to catastrophic consequences. Thus, during World War Il dive
bomber pilots found it preferable to enter a dive with a roll over
maneuver which would maintain "positive G's" rather than a push-
over which would expose them to the whipsaw effect of "negative
G's" during the dive with immediate reversal to positive G's dur-I' ing the subsequent dive pullout. In the latter case the cardiovas-
cular system would complete its compensation for a negative G con-

dition and leave the pilot very unfavorably prepared for the subse-
quent onslaught. of positive G. Even in the more advantageous con-
dition of maintenance of positive G's throughout the maneuver, un-
consciousness with resulting involuntary relaxation of the stick
was feared and aircraft were normally trimmed up nose-high such
that, should syncope (brief loss of consciousness due to sudden
lowering of blood pressure) occur, the aircraft might fly itself

out of th.e dive (176).

Simulation for the purposes of pilot training, in the main,
has not provided means to replicate the physiological effects of
high G. Although centrifuges are invaluable for research, they
are not practical for pilot training. Even the lower acceleration

levels of normal maneuvering have been exceedingly difficult to

-3-



simulate satisfactorily through the use of large simulated cockpit

motion systems,

The G-seat approach to somatic stimulation teaches that di-

rect sensory stimulation can be acceptable, useful, and perhaps

extended to produce some of the high G effects of importance for

* training. But what are the effects associated with high C? Which

effects are important to pilot control of the aircraft? Which ef-

fects alter the structure of a mission? How might these effects

be beat generated in the lg training environment? Do the physio-

logical effects include lower acceleration range stimuli useful to

the pilot in a broader range of maneuvering circumstances than
just those found at high G levels? Are the inclusion of these

effects within tactical aircraft simulation worth the cost andf possible pilot encumbrance necessary to generate the effects?

These are questions without readily available answers. Yet
the trend of aircraft technology indicates both a greater utiliza-

tion of the high G regime and increased reliance on simulation for

training. Therefore those responsible for tactical aircraft pilot

training programs and equipment must be concerned with addressing

these questions and initiating work leading to their answer.

1.2 hpproach

The answers to these questions posed above are rooted in an under-

standing of the behavioral changes which occur as a function of

acceleration induced physiological change. At least two poss'Ible

approaches could be taken: experimentation within the actual. task

and attempt to monitor the relationship of individual physiologi-

cal variables to behavior or, secondly, work within a totally sim-

ulated environment and sequentially add the sim2Jlation producing

additional physiological stimuli while observing behavioral

change.

-4- j



The prognosis in using th fir-it approach to determine the
importance of high G effects is unfavorable. Collyer, in a 1973 t

report (50) addressing psychomotor testing, addresses this point

pessimistically.

"The studies reviewed in this report section indicate

that only a few attempts have been made to measure, simultan-

eously, G-induced changes in both the behavioral and the

physiologic variables. The results have generally been dis-

appointing. Indeed, considecabla doubt has been expresssed

by some researchers that the combined physiologic-psychologic
approach has a significant probability of success in the near

future. The main reason for this doubt is the complexity, in

all psychomotor tasks, w:ich makes it difficult (if not impos-

sible) to establish connection between behavioral integrity

and the integrity of physiologic systems. Howard has stated

that 'alterations in performance cannot, in general, be pre-

dicted from the physiological response to acceleration, be-

cause the ability to carry out a task always depends on the

ii functioning of more than one system' (ref. 37; p. 652).

Other authors, such as Chambers (14), have stressed that

previous research has shown the difficulty of predicting the
acceleration thresholds for a performance drop on the basis

of those for physiologic changes. The commonly employed

physiologic indices have not been reliable or sensitive
correlates to the subtle changes in human psychomotor effi-

ciency -- especially in comparatively complex tasks which
approximate operational conditions.

Another reason for this difficulty, of formulating gen-

eral principles for the prediction of behavioral change based

on physiologic change, is that both physiology and behavior

are affected by stress. As pointed out by Hartman (36)

changes in a specific physiologic parameter mey be evident as

the G-level is gradually increased; but measurable behavioral

-5- I



,changes may not occur until n relatively high G-level has f

been reached -- at which time the performance decrement may

be sudden and dramatic."

We have selected the second approach which advocates that the

importance of an acceleri -ion effect can be best evaluated through

production of the effect itself within a simulation of the task in

which the effect is normally experienced. The Air Force Human

Resources Laboratory (HRL) has commissioned the study reported on

herein as a step toward that end. We see the overall approach

being executed in three phases. This study forms the first phase

with an objective of identifying the physiological consequences

of, and stimuli associated with, exposure to the high G regime.

An engineering assessment of the high G physiological effects is

employed with the objective if establishing concepts by which

these effects might be introduced in lg laboratory simulation. We

believe that a greater numbe of devices, thus a greater number of

high G effects can be initially simulated and investigated in a

* laboratory environment in which the design of the device may make

certain trespasses on environmental fidelity and pilot imposition

which may not readily be accepted in line simulation.

The second phase would deal with the design, construction,

installation, ;,erification and use of the laboratcry devices set

forth in the study. This would be the critical phase in identi-

fying the importance of acceleration induced physiological effects

as it pertains to the pilot training effort and it is expected

that the high G simulation augmentation device would be employed

in an otherwise high fidelity task simulation to determine its

effect on pilo, performance and mode of control. Comparison of

pilot simulator performance with and without the benefit of the

high G effect would be made against the performance observed in

the actual task. It is therefore anticipated that either instru- U
mented aircraft flight or, where feasible, centrifuge simulation

would be required to support the investigation. In comparisons of
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